
Visual Basic .NET – A Study Guide 1

VISUAL BASIC .NET

A Study Guide

BASIC CONCEPTS
Visual Basic .NET (VB .NET) is a modern object-oriented programming language designed by

Microsoft for Rapid Application Development (RAD). Any discussion of object-oriented

involves the use of some important terms and concepts:

OOP - object-oriented programming

OOP involves using an object-oriented language to create a program that contains

one or more objects

OOD - object-oriented design

OOD is the design methodology used to plan object-oriented programs whereby a

problem is divided into one or more objects.

Object

An object is Anything that can be seen or touched. An object has attributes that

describe it. An object has behaviors that the object can either perform or have

performed on it. A clock, a car, a book, a form, a text window, and a button are all

examples of objects.

Control

A control is a special type of object used in web and windows forms. Examples

include command buttons, text boxes, labels, and check boxes.

Class

A class is a pattern or blueprint for creating an object. An object is an instance of a

class.

Encapsulation

Encapsulation, to enclosed in a capsule, combines an object’s attributes and

behaviors into one package—a class; a car manufacturer encapsulates a car’s

attributes and behaviors into a class—a blueprint.

Abstraction

Abstraction is hiding the internal details of an object to prevent the user from making

inadvertent changes to the object; some attributes and behaviors are hidden, while

others are exposed; a car’s steering wheel is exposed, while the engine is hidden.

Inheritance

Inheritance allows you to create one class from another class. The new class is called

the derived class and the original class is called the base class. A car manufacturer

can create a blueprint of the next year’s car from the current year’s blueprint.

Visual Basic .NET – A Study Guide 2

Methods

Methods define an object’s behaviors. They are the operations that an object can

perform and can be performed on itself.

Large programs may be organized into smaller, more manageable pieces, called

methods. Once a method is written, we need no longer concern ourselves with its

internal details (abstraction). We use the method as a whole and concentrate on the

overall task.

Properties

Properties are an object’s attributes. Properties are the data associated with an

object.

Methods must be provided with data in order to do their job. The data provided to

methods are object properties. Properties may include distance, direction, color, size,

and much more.

Function

A Function is a method that returns a value.

Events

Events are signals by which an object can notify other objects that something

noteworthy has occurred. Examples including clicking on an object, entering text,

and opening a new window.

Members

An object’s properties, methods, and events can be referred to as its members.

Scope

Every method has a scope. Methods that reference every object in an application

have global scope and are referred to as global-level methods. Methods that define

behaviors for a single object have local scope.

An object in VB .NET a self-contained unit that combines code and data. A class contains the

code that defines the characteristics of an object. An object is an instance of a class. The

process of creating an object from a class is called instantiation. More than one object

instance can be created from a single class. A new class can inherit the characteristics of a

base class. If you instantiate two or more instances of the same class, all of the objects have

the same properties, methods, and events.

When we use the Alice Design Environment (DE) to design a world, the DE automatically

generates code that creates objects based on classes from the class library. When we set up a

world, we may view and set some the properties objects directly, prior to “playing” the world

(running the program). We may view and set all of the properties for our objects during

runtime using pre-written methods or we may write our own methods.

Visual Basic .NET – A Study Guide 3

VISUAL STUDIO AND THE .NET ENVIRONMENT
The .NET framework defines the environment in which we will be developing and executing

Visual Basic .NET applications. Visual Studio .NET is a suite of products that includes these

three programming languages; all run within the .NET framework.

• VB .NET – Visual Basic .NET. Designed for Rapid Application Development (RAD)

• Visual C# .NET – Combines features of Java and C++ for RAD

• Visual C++ .NET – MS version of C++, a full featured language

Other languages have been developed for use within the .NET framework, but they are not

part of Visual Studio. Visual Studio includes the Integrated Design Environment (IDE), a

powerful tool used for developing applications in the .NET languages. Visual Studio .NET also

comes with a version of MS SQL Server that runs on your workstation.

VB.NET is typically used to develop two types of

applications. First, is a Windows Forms application. A

Windows Forms application runs on the user’s PC and

consists of one or more Windows forms. These forms

provide the GUI for the application. Each Windows form

can contain controls like labels, text boxes, command

buttons, radio buttons, and check boxes, and others.

The other type of application is a Web Forms

application. A web forms application consists of one

or more web forms that provide the user interface.

A Web Form runs in a web browser.

Visual Basic .NET – A Study Guide 4

.NET applications do not access the operating system directly. They use the services of the

.NET framework, which serves as an interface to the Operating System. The .NET framework

includes the .NET Framework Class Library and the Common Language Runtime, or CLR. The

.NET Framework Class Library contains hundreds of classes, or pre-written code that can be

used by any of the .NET programming languages. The CLR is essential to running programs

within the .NET framework. The CLR manages memory allocation, code execution and

conversion, etc. The CLR also provides for the basic data types. This enables programmers to

write in different languages while assuring compatibility between them.

Projects and Solutions
Before we do anything else, we should distinguish between Projects and Solutions. A project

is a container that holds Visual Basic source files and other files needed to create an

assembly. A project may contain several files, but they all get compiled together into a single

assembly. There is a .vbproj file that is used to keep track of all the files in a project. A

Solution is a container that holds one or more projects. If there is only one project in a

solution, there is not much to distinguish one from the other.

Multi-project solutions are useful if a group of programmers is working together, or if

multiple languages are to be used. There is a .sln file that is used to keep track of all the

projects in a solution.

Visual Basic .NET – A Study Guide 5

The Visual Studio Integrated Design Environment (IDE)

THE VISUAL STUDIO START PAGE

The Visual Studio start page is actually the home page of a built-in web browser. The browser

is used here to display information and help pages. It uses hyperlinks, and other web objects

that you are probably quite familiar with.

THE OPEN PROJECT DIALOG BOX

To open a project, Click File… Open Project on the menu bar. Use the controls in the Open

Project dialog box to locate and select the project or solution you want to open. In this case,

we have opened the Financial Calculations project.

Visual Basic .NET – A Study Guide 6

To close a project, you may either close Visual Studio or use the File… Close Project

command.

THE VISUAL STUDIO IDE WITH FRMINVESTMENT OPEN.

The main part of the IDE contains a number of tabbed windows. We use the Form Designer

window to develop forms.

You may need to open the toolbox. Clicking on the tack will anchor it in place. The toolbox

contains a variety of items that are mostly used to add controls to our forms.

The properties window is used to display and to modify the attributes, called properties, of

every control in our form.

The Solution Explorer is used to manage the various project files.

At the top of the screen is the title bar, the menu bar, and the standard toolbar. Various

other toolbars may appear, as we need them.

Visual Basic .NET – A Study Guide 7

A CODE MODULE OPEN IN THE VISUAL STUDIO IDE.

Double-clicking on the frmInvestment module immediately below frmInvestment.vb in the

Solution Explorer will open a code window with the code behind the form. It is a text editor

with certain features meant to assist us in writing syntactically correct code.

Note that these two windows do not represent different files. They provide two views of the

same VB source file.

Visual Basic .NET – A Study Guide 8

 The Solution Explorer is used to help keep track of all the files that comprise a .NET solution.

You can use the (+) and (-) buttons to expand an collapse groups.

The VB source files all end with .vb. Form files and code files have different icons, but end

with .vb. You may find it useful to use frm as the first three letters of each form file.

You will find that, in creating a .NET project in Visual Studio, a great many files are created.

Be sure to keep all of these files together. They are necessary to proper management of your

application.

To run (debug) an application within the Visual Studio IDE, do one of the following:

• Click on the Start button in the toolbar

• Click on the Debug tab, then on Start Debugging

• Press F5

Visual Basic .NET – A Study Guide 9

CREATING PROJECTS

The Invoice Total Form

The New Project dialog box.

To create a new project in Visual Studio, Click on File…New Project. The New Project dialog

box will open.

Be sure that Visual Basic is selected in the left-hand pane and Windows Forms Application is

selected in the center pane. Type the name of the application, “InvoiceTotal” in this case,

into the Name textbox at the bottom.

NOTE: You can control where your projects are saved by clicking Tools…Options and selecting

Projects and Solutions, General in the left-hand pane of the dialog box that opens.

Visual Basic .NET – A Study Guide 10

One way to add a control to a form

• Select the control in the Toolbox.

• Click in the form where you want to

place the control and drag the pointer

on the form to size the control.

Two other ways to add a control to a form

• Double-click on the control in the

Toolbox.

• Drag the control from the Toolbox and

drop it onto the form.

How to select and work with controls

• To select a control on the form, click on

it.

• To move a control, drag it.

• To size a selected control, drag one of

its handles.

How to select and move more than one control

• Hold down the Ctrl key as you click on

each control.

• Click on a blank spot in the form and

then drag around the controls.

How to change the size of the form

• Click on the form.

• Drag one of its handles.

Visual Basic .NET – A Study Guide 11

A label is used by the application to display text. Users may not enter text into a label.

A textbox is used when a user must enter text into the application. The application may also write text

to a textbox.

A Button is used to execute a command.

To create the form shown, select each control in turn and enter its properties in the Properties Window:

Place the controls on the form and configure as follows:

Default name Property Setting Property Setting

Label1 Text Order total: Location 15, 30

 TextAlign MiddleRight AutoSize True

 TabIndex 0

Label2 Text Discount: Location 15,60

 TextAlign MiddleRight AutoSize True

 TabIndex 0

Label3 Text Invoice total: Location 15,90

 TextAlign MiddleRight AutoSize True

 TabIndex 0

Visual Basic .NET – A Study Guide 12

TextBox1 Name txtOrderTotal Location 110,27

 Text (empty) Size 100,22

 TabIndex 1

Label4 Name lblDiscountAmount Location 110,55

 Text (empty) AutoSize False

 TextAlign MiddleLeft

 TabIndex 0

 BorderStyle Fixed3D

Label5 Name lblInvoiceTotal Location 110,90

 Text (empty) AutoSize False

 TextAlign MiddleLeft

 TabIndex 0

 BorderStyle Fixed3D

Button1 Name btnCalculate Location 8,135

 Text &Calculate Size 75,23

 TabIndex 2

Button2 Name btnExit Location 135,135

 Text E&xit Size 75,23

 TabIndex 3

The property settings for the form

 Property Setting

 FormBorderStyle FixedSingle

 MaximizeBox False

 MinimizeBox False

 StartPosition CenterScreen

 Text Calculate invoice total

 AcceptButton btnCalculate (when Enter is pressed)

 CancelButton btnExit (when Esc is pressed)

 Size 250,220

Visual Basic .NET – A Study Guide 13

When we click on a button, a Click Event occurs. We need to write the code for the click event that

determines what actions are to occur when we click on each button. In the case of the Calculate Button,

we want the application to apply the discount rate, display it in a label, calculate the Invoice Total, and

display this in a different label. The following pseudocode may be used to plan the Calculate Button

Click Event Procedure.

Declare variables

 decOrderTotal

 decDiscountAmount

 decInvoiceTotal

decOrderTotal = amount entered in txtOrderTotal

decDiscountAmount = decOrderTotal * 0.2

decInvoiceTotal = decOrderTotal-dDiscountAmount

Display decDiscountAmount, decInvoiceTotal

Move focus to txtOrderTotal

The last step is used to move the cursor to the Textbox so that the application is ready for the next

calculation.

You can open the code editor for a button’s click event procedure by double-clicking on the button. This

will open the code editor for the form and add the necessary syntax for a click event procedure for that

button.

We can use the built-in Intellisense feature of Visual Studio to enter member names in the code editor:

• Type the object name followed by a dot to display a list of the available members for an object.

• Type the first few letters of the member name, so the Code Editor selects the first entry in the

list that matches those letters.

• Once the correct member name is selected, press the Tab key to insert the member into your

code.

Visual Basic .NET – A Study Guide 14

Double-click on a button to open a code window and begin work on its click-event procedure.

The code for the Calculate Button Click Event Procedure is shown above.

The first three lines declare the three variables decOrderTotal, decDiscountAmount, and decInvoiceTotal

as type decimal. Decimal variables are useful for working with dollar amounts. The prefix “dec” in each

name is solely for use by the programmer as a reminder that this member is a variable of type decimal.

The next line of code stores the Text property of the text box in the decOrderTotal variable. The text

property contains any text that is shown in the textbox and has presumably been entered by the user.

This is an assignment statement. In an assignment statement, the expression to the right of the equals

sign is evaluated and the result is stored in the variable on the left.

The next lines calculates the discount which is 20% (0.2) and stores the discount in the

decDiscountAmount variable.

The next line of code calculates Invoice Total amount and stores the result in the decInvoiceTotal

variable.

The next two lines display the discount amount and invoice total in their respective labels. By writing to

the text property of a label, we cause text to appear.

Finally, the Focus method of the txtOrderTotal textbox is invoked, causing the cursor to move into the

textbox.

Visual Basic .NET – A Study Guide 15

The click event procedure for the Exit button does nothing more than stop to application from

executing. One of the easiest ways to do this is to close the form. We can use the Close method for this.

The code above uses the alias for the current form , Me.

There are three ways to run a project inside of Visual Studio:

• Click the Start button located in the toolbar

• Press the F5 key

• Select Debug…Start Debugging on the menu

To save your project, select File…Save All. You may be prompted for a location to save your project.

Visual Basic .NET – A Study Guide 16

WORKING IN THE CODE EDITOR AND USING VARIABLES

Examine the following click event procedure:

Note that first line is quite long and actually continues across two lines. This is done with the use of a

continuation character, a space followed by the underscore. Without the continuation character, the

line will be difficult to read as it may continue beyond the limits of the code editor window and require

horizontal scrolling.

Comments are preceded by an apostrophe. Comments are ignored by the Visual Basic compiler and

interpreter. They are for the use of the programmer and serve to help document the code. Comments

may exist on their own line or follow code on the same line. Nothing may follow a comment on the

same line.

Visual Basic .NET – A Study Guide 17

Data Types

The following data types are available in Visual Basic. You should always declare your variables with a

data type.

Data type Prefixes Description

String str or s Any number of characters

Char chr or c A single character

Boolean bln or b A True or False value

Date dtm An integer that represents the date

Byte byt or y A positive integer value from 0 to 255

Short srt or t An integer from –32,768 to +32,767

Integer int or i Larger integer

Long lng or l Still larger integer

Decimal dec or d A number with up to 28 significant digits (integer and fraction)

Single sng or f A single-precision, floating-point number

Double dbl or p A double-precision, floating-point number

Object obj or o An address that refers to an object

When you declare a variable, you may choose to initialize the variable with a value, or allow Visual Basic

to initialize your variable with a default value.

Data type Default Initial Value

All numeric types Zero (0)

Boolean False

Char Binary 0

String or Object Nothing (it has no value)

Date 12:00 a.m., January 1, 0001

Basic Syntax for declaring and initializing variables
Dim|Private|Public|Static variablename [As type] [= expression]

Typical variable declarations
Dim sErrorMessage As String

Dim iIndex As Integer = 1

Dim tMonth As Short, dRate As Decimal

Dim iStatus, iRunningValue As Integer

Private bAddMode As Boolean = True

Public iUserStatus As Integer

Static iRunningValue As Integer

Visual Basic .NET – A Study Guide 18

Variable naming recommendations

• Start each name with its data type prefix in lowercase letters.

• Use camelcase to make the names easier to read.

• Assign meaningful names that are easy to remember.

The syntax of an assignment statement
variablename = expression

Typical assignment statements
iMonth = 1

iMonth = iMonth + 1

dDiscountAmount = dOrderTotal * .2

dInvoicetotal = dOrderTotal + dDiscountAmount

dChangePercent = _

 (dThisYTDSales – dLastYTDSales) / dLastYTDSales * 100

dArea = (dRadius ^ 2) * 3.1416

iMonth = 1

iMonth = iMonth + 1

dDiscountAmount = dOrderTotal * .2

dInvoicetotal = dOrderTotal + dDiscountAmount

dChangePercent = _

 (dThisYTDSales – dLastYTDSales) / dLastYTDSales * 100

dArea = (dRadius ^ 2) * 3.1416

Arithmetic operators

Operator Name

+ Addition

- Subtraction

* Multiplication

/ Division

\ Integer division

Mod Modulo

^ Exponentiation

- Negative sign

Other assignment operators

Assume i = 13

Operator Example Description Result
+= i += 5 i = i + 5 i = 18

-= i –= 6 i = i – 6 i = 7

*= i *= 2 i = i * 2 i = 26

/= i /= 2 i = i / 2 i = 6

\= i \= 3 i = i \ 3 i = 4

^= i ^= 2 i = i ^ 2 i = 169

Visual Basic .NET – A Study Guide 19

Order of precedence for arithmetic operations
1. Exponentiation

2. Negative sign

3. Multiplication, division, integer division, and modulo

4. Addition and subtraction

Parentheses override the order of precedence. The operations in the innermost sets of parentheses are executed

first.

Examples of arithmetic expressions

iVarX = 14 'assume for all examples

iVarY = 8 'assume for all examples

dVarA = 8.5 'assume for all examples

dVarB = 3.4 'assume for all examples

iResult = iVarX \ iVarY 'result = 1

iResult = iVarX mod iVarY 'result = 6

dResult = dVarA / dVarB 'result = 2.5

dResult = dVarA mod dVarB 'result = 1.7

iResult = -iVarY 'result = -8

iResult = iVarY + iVarX 'result = 6

iResult = iVarX \ iVarY 'result = 1

iResult = iVarX mod iVarY 'result = 6

dResult = dVarA / dVarB 'result = 2.5

dResult = dVarA mod dVarB 'result = 1.7

iResult = -iVarY 'result = -8

iResult = -iVarY + iVarX 'result = 6

iVarX = 10

iVarY = 5

iResultA = iVarX + iVarY * 5 'iResultA is 35

iResultB = (iVarX + iVarY) * 5 'iResultB is 75

dResultA = iVarX - iVarY * 5 'dResultA is -15

dResultB = (iVarX - iVarY) * 5 'dResultB is 25

Visual Basic .NET – A Study Guide 20

Casting

When different data types are combined in an expression, they must be cast into a common data type. This is

usually the broadest, or most inclusive of the data types being used.

dVarA = 5.0

iVarB = 7

iVarC = 9

dResult = (dVarA + iVarB + iVarC) / 4 'dResult is 5.25

dVarA = iVarC 'dVarA is 9.0

In the above examples, the integers are cast into type decimal. Type decimal is a broader data type because it

includes all of the values available to an integer and more.

Dates and Strings

Simple assignment statements for dates
dtmStartDate = #June 1, 2001#

dtmStartDate = "June 1, 2001"

dtmStartDate = #6/1/2001#

How to concatenate character strings
sFirstName = "Bob"

sLastName = "Smith"

sFullName = sFirstName & " " & sLastName

How to append one string to another string
sFirstName = "Bob"

sLastName = "Smith"

sName = sFirstName & " "

sName = sName & sLastName

How to append with the &= operator
sFirstName = "Bob"

sLastName = "Smith"

sName = sFirstName & " "

sName &= sLastName

Visual Basic .NET – A Study Guide 21

THE SELECTION STRUCTURE

The Selection Structure is used to make a decision or comparison and then, based on the result of that

decision or comparison, to select one of two paths. The condition must result in either a true (yes) or

false (no) answer. If the condition is true, the program performs one set of tasks. If the condition is false,

there may or may not be a different set of tasks to perform.

The following pseudocode illustrates these two possibilities:

If condition is true Then

 perform these tasks

End If

Perform these tasks

whether condition is true

or false

If condition is true then

 perform these tasks

Else

 perform these tasks

End If

Perform these tasks

whether condition is true

or false

The syntax of the block If statement
If condition Then

 statements

[ElseIf condition-n Then

 statements] ...

[Else

 statements]

End If

The syntax of the one-line If statement
If condition Then statements [Else statements]

Relational Operators
We use relational operators to create the condition used in an If statement. The result of a relational

expression is always Boolean. That is, the result may only be True or False.

 = Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> Not equal to

These operators are evaluated from left to right, and are evaluated after any mathematical operators.

Visual Basic .NET – A Study Guide 22

Expressions Containing Relational Operators

10 + 3 < 5 * 2

• 5 * 2 is evaluated first, giving 10

• 10 + 3 is evaluated second, giving 13

• 13 < 10 is evaluated last, giving false

7 > 3 * 4 / 2

• 3 * 4 is evaluated first, giving 12

• 12 / 2 is evaluated second, giving 6

• 7 > 6 is evaluated last, giving true

Using Relational Operators in the condition

A condition that checks if the value stored in the intNum variable is greater than 123

intNum > 123

A condition that checks if the value stored in the strName variable is “Mary Smith”

UCase(strName) = “MARY SMITH”

The second example raises a common issue. When users enters “Mary Smith,” they type “Mary Smith,”

“mary smith,” “MARY SMITH,” or something else. Our intent is to check for the string M-A-R-Y-SPACE-S-

M-I-T-H in upper or lower case. The UCase function converts all characters in a string to upper case,

eliminating the problem. This function is used when we wish to ignore case. If case is important, then it

should not be used.

Compound Logic
Sometimes we wish to evaluate more than one condition in a single statement. The various conditions

are connected logically using Not, And, or Or.

Logical Operators

Not Reverses the truth value of the condition; false becomes true and true becomes false

And All conditions connected by the And operator must be true for the compound condition to be

true

Or Only one of the conditions connected by the Or operator needs to be true for the compound

 condition to be true

These operators are evaluated after any mathematical and relational operators. The order of

precedence is Not, And, Or.

Visual Basic .NET – A Study Guide 23

Truth Table for Not Operator

A Not A

F T

T F

Truth Table for And Operator

A B A And B

F F F

F T F

T F F

T T T

Truth Table for Or Operator

A B A Or B

F F F

F T T

T F T

T T T

Expressions Containing the And Logical Operator

3 > 2 And 6 > 5

• 3 > 2 is evaluated first, giving true

• 6 > 5 is evaluated second, giving true

• true And true is evaluated last, giving true

10 < 25 And 6 > 5 + 1

• 5 + 1 is evaluated first, giving 6

• 10 < 25 is evaluated second, giving true

• 6 > 6 is evaluated third, giving false

• true And false is evaluated last, giving false

Expression Containing the Or Logical Operator

8 = 4 * 2 Or 7 < 5

• 4 * 2 is evaluated first, giving 8

• 8 = 8 is evaluated second, giving true

• 7 > 5 is evaluated third, giving false

• true Or false is evaluated last, giving true

Optimization in Visual Basic

If you use the And operator to combine two conditions, Visual Basic does not evaluate the second

condition if the first condition is false. If you use the Or operator to combine two conditions, Visual Basic

does not evaluate the second condition if the first condition is true.

Order of precedence for conditional expressions

1. All arithmetic operations

2. Relational operations

3. Logical operations in this order: Not, And, Or

Visual Basic .NET – A Study Guide 24

Examples of Logical Operators used in the condition

To pass a course, a student must have an average test score of at least 75 and an average project score

of at least 35. The condition using the variables sngTest and sngProj is:

sngTest >= 75 And sngProj >= 35

Only people living in the state of Michigan who are over 65 years old receive a discount. The condition

using the variables strState and intAge is:

UCase(strState) = “MICHIGAN” And intAge > 65

Only employees with job codes of 34 and 67 will receive a raise. The condition using the variable intCode

is:

intCode = 34 Or intCode = 67

Nested Selection Structure

A nested selection structure is one in which either the true path or the false path includes yet another

selection structure. Any of the statements within either the true or false path of one selection structure

may be another selection structure.

Nested If in the true path

If condition1 Then

 [instructions when condition1 is true]

 If condition2 Then

 [instructions when both condition1 and

 condition2 are true]

 [Else

 [instructions when condition1 is true and

 condition2 is false]]

 End If

Else

 [instructions when condition1 is false]]

End If

Nested If in the false path

If condition1 Then

 [instructions when condition1 is true]

Else

 If condition2 Then

 [instructions when condition1 is false and

 condition2 is true]

 [Else

 [instructions when both condition1 and

 condition2 are false]]

 End If

End If

Visual Basic .NET – A Study Guide 25

Nested If Example 1

A selection structure that assigns a sales tax rate to the sngTax variable. The tax rate is determined by the

state code stored in the intCode variable. Codes of 1 and 3 represent a 4% rate; a code of 2 represents a

5% rate. All other codes represent a 2% rate.

If intCode = 1 Or intCode = 3 Then

 sngTax = .04

Else

 If intCode = 2 Then

 sngTax = .05

 Else

 sngTax = .02

 End If

End If

Nested If Example 2

A selection structure that assigns a bonus to the sngBonus variable. The bonus is determined by the

salesperson’s code (intCode) and, in some cases, by the sales amount (sngSales). If the code is 1 and the

salesperson sold at least $10,000, then the bonus is $500; otherwise these salespeople receive $200. If

the code is 2 and the salesperson sold at least $20,000, then the bonus is $600; otherwise these

salespeople receive $550. All others receive $150.

If intCode = 1 Then

 If sngSales >= 10000 Then

 sngBonus = 500

 Else

 sngBonus = 200

 End If

Else

 If intCode = 2 Then

 If sngSales >= 20000 Then

 sngBonus = 600

 Else

 sngBonus = 550

 Else

 sngBonus = 150

 End If

End If

It may appear that using compound logic will ease the clarity of this solution. The example below shows

that this is not always the case.

Visual Basic .NET – A Study Guide 26

If intCode = 1 And sngSales >= 10000 Then

 sngBonus = 500

Else

 If intCode = 1 And sngSales < 10000 Then

 sngBonus = 200

 Else

 If intCode = 2 And sngSales >= 20000 Then

 sngBonus = 600

 Else

 If intCode = 2 And sngSales < 20000 Then

 sngBonus = 550

 Else

 sngBonus = 150

 End If

 End If

 End If

End If

The ElseIf Clause

When a selection is to be made from a range of values, the ElseIf structure may prove useful.
If iQuantity = 1 Or iQuantity = 2 Then

 dDiscount = 0

ElseIf iQuantity >= 3 And iQuantity <= 9 Then

 dDiscount = 0.1

ElseIf iQuantity >= 10 And iQuantity <=24 Then

 dDiscount = 0.2

ElseIf iQuantity >= 25 Then

 dDiscount = 0.3

Else

 dDiscount = 0

End If

The ElseIf clause is sometimes useful in the Nested If structure.
If sType = "Retail" Then

 If iQuantity <= 9 Then

 dDiscount = 0

 ElseIf iQuantity <= 19 Then

 dDiscount = .1

 ElseIf iQuantity >= 20 Then

 dDDiscount = .2

 End If

Else '(sType <> "Retail")

 dDiscount = .4

End If

The comment following the keyword Else is used to clarify to the programmer the condition under

which the Else clause will be executed.

Visual Basic .NET – A Study Guide 27

The Decision Structure in the Invoice Total Application

We can use an If statement to calculate the discount amount based on the dollar amount of the sale. In

this case, a 20% discount will be applied to sales of at least $100 and no discount will be applied to sales

less than $100.

Private Sub btnCalculate_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles btnCalculate.Click

 Dim dOrderTotal As Decimal

 Dim dDiscountPct As Decimal

 Dim dDiscountAmount As Decimal

 Dim dInvoiceTotal As Decimal

 dOrderTotal = txtOrderTotal.Text

 If dOrderTotal >= 100 Then

 dDiscountPct = .2

 Else

 dDiscountPct = 0

 End If

 dDiscountAmount = dOrderTotal * dDiscountPct

 dInvoiceTotal = dOrderTotal - dDiscountAmount

 lblDiscountAmount.Text = dDiscountAmount

 lblInvoiceTotal.Text = dInvoiceTotal

 txtOrderTotal.Focus

End Sub

